AD=A120 298 NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF MATHEMATICS F/76 12/1
A CONDITIONED LIMIT LAW RESULT FOR JUMPS IN THE SEQUENCE OF PAR=~ETC(U}
AUG 82 w P MCCORMICK FN%ZO-BZ-C-ONW
UNCLASSIF!ED TR=17 AFOSR-TR=82-0844

£l ...........
END
e
H -8
onic




4

AFOSR-TR- 82-0844 - .

CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

v
"k !

a2

AD A129

AXONDITIONED LIMIT LAW RESULT FOR JUMPS IN THE
SEQUENCE OF PARTIAL MAXIMA OF A STATIONARY GAUSSIAN SEQUENCE

by
William P, McCormick

DTIC

ELECTE]
TECHNICAL REPORT #17 0CT14 1982 ;

AUGUST 1982

B

Approveqg

for pyy

distr.tbution unllif;; tre;.ease :
e L ]

QTG FiLE COPY

82 10 12 141

—— - - -




A Conditioned Limit Law Result For Jumps In The

Sequence of Partial Maxima of a Stationary Gaussian

Sequence

W.P. McCormick

University of Georgia
and
University of North Carolina at Chapel Hill

Keywords: Gaussian sequences, maxima, weak convergence, poini processes,

aIR FORCE OFFT
I CE OF sop
Nof s o OF TRANSNI 7741, r?gifé © RESEARCH (AFsc)
échnie-~: »
&Pprovedfo?puh;;fwthaSbesnre"ie'9dandis

Distribution s, ,,,nli;eittea.::e TA¥ AFR 133070,
J. KZRPER oG

This research has been supported by AFOSR Grant No. F49620 82 C 0009.




Conditional of a jump occurring, the limiting distribution for
the size of the jump in the partial maxima sequence for a class of sta-
tionary Gaussian sequences is derived. It is shown that the limiting dis-
tribution is exponential with mcan /I-Y where Yy equals the atom at zcro of
the spectral distribution function associated with thc correlation function

of the sequence. A generalization of this result to include the entire

jump sequence subsequent to the jump conditioned to occur is also presented.
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1. INTRODUCTION

Let {Xk’ k>o} be a stationary sequence of standard normal
random variables with correlation function r. In the main result of
this paper we will require the correlation function to satisfy the

condition that there exists some o < a < 1 such that

1
In n

(1.1) 4. SUP | - T, | =0 ( )

[n7] <k<n

and that r is not identically one.
Condition (1.1) is of course not a mixing condition. 1In
fact it follows from (1.1) that T as n +» = where vy is the atom
at zero of the spectral distribution function associated with r, (2.6} of
[3]. Note o < y < 1 since r is assumed to be not identically 1 and so by

stationarity sup Irnl < 1.
n

Furthermore we have the simple but useful representation of

the first n + 1 terms of the sequence given by ‘
- R ;
a.2) & °J”Yk+xn»°iki“ :
t
- n :
shere v M- K n g 1oy o 2(k) = E(X, - X)°. ¥
k cn(k) n n+1 k50 Kk’ n k n
Under condition (1.1) it follows {3] that p (i,j) = E yinyj“ satisfies
max | e (4,1) - ZOD =)y ol
0<i<j<n 1 - r(n)

Thus we see that condition (1.1) imposes a mixing condition

n . < L. . .
on the Yk variables and that Xn referred to as a binding variable is
responsible for any strong dependence in the original sequence. Gaussian

processes with this type of structure have been considered in a number of




papers e.g. [3], [5] and it is the presence of such a binding variable

which effects departures from the usual asymptotic results in the strongly
dependent case.

The problem under consideration in this paper is that of

jumps in the partial maxima sequence. Denoting Mnl = max Xk and
o<k<m
, N . . .
M*m n max \k we see that a jump occurs at time m = n in the
g o<k <m

»

Mm sequence if and only if a jump occurs at time m = n in the M*
sequence. Consequently the binding variable does not affect the occur-
rence of jumps and we expect that under (1.1) the limiting behavior for

the jumps in the dependent case should agree with the corresponding

result for independent variables. That this is indeed the case is

demonstrated in section 2.

2. CONDITIONED LIMIT LAW FOR JUMPS

Theorem 2.1 Let {Xk’ k > o} be a stationary sequence of

standard normal random variables with correlation function rn = E XO Xn

not identically one and satisfying

1
In

| = o

2.1 sup I'rk -r n) for some fixed 0 < a < 1.°

[na]‘i k <n n

Then with Mn = max Xk and Cn = Y2 In n , we have
o <k<n
X
5 . ) _ - o e
(2.2) Him P{c (M - M ) >x | M -M _,>0}e” f_y ,x>0

N+
where y equals the atom at zero of the spectral distribution function
associated with r.

Before proceding to the proof of Theorem 2.1 it will be of
interest to have a uniform bound on the tail of the distribution for the
normalized maxima. This is provided to us by the following result of

Mittal, [4].




Lemma 2.1 (Mittal). For a stationary sequence of standard normal
random variables {Xk, k > o} with correlation function r

satisfying r In n = 0(1),

tA2
e P{cn(Mn - bn) <-A}=o0(1) as A+ =

uniformly in n for all t in some neighborhood of zc¢ro where bn
In{4r 1n n)
2 ¢
n
A check of the proof of this lemma reveals that it may be

stated in the following form which is suitable to our purposes.

Lemma 2.2 Let {Xk n] , k=0, ..., n,n=1,2, ... be a triangular

array of standard normal random variables. Then setting

M =

rn(l,J) = E Xi,n Xj,n’ A X and dn(x) = su Irn(1,3)|

k,n ..
i-jl> x

max
o<k<n

we have
d
e P e M -b)<-Al=o0()asA-se
n'n n -

uni’ “.ly in n for all t in a neighborhood of zero provided

(i) i?ﬁ'an(l) <1

n->o

(2.3)
(ii) 6n(nu) Inn = 0(1) for some fixed o < o < 1.

In order to prove the conditioned limit law result we need to determine
the rate at which the probability of the conditioning event goes to zero
and to establish an unconditional 1limit law result.

Leima 2.3 Under the conditions of Theorem 2.1 we have

(2.4) ii: nP{M -M 1

Proof. Since (Xo, X . Xo) we have

1’




o(b) = 1- 0 (0,k) 1/2
< J P{wk < (-
n - 1 + pn(o,k) n

h

b 2
likin}e—eﬂy—‘—i—— dy

4In n
. C oY = 2 -1/2 on (O) v
where ©_(k,y) = (1 - p_"(0,k)) (c"nﬁ‘(‘)‘ -1 (b ¢ 'Cr;) ,
1 x2/2 n
¢(x) = — e - and wheie the Wk are standard normal random

/2n

variables with correlation funciion

p_(i,3) - p_(0,1) p_(0,3)
(2.5) ¢ (1,3) = EW" WS 2 T 172
Tooo- e 00,1070 - b (0,5))

o(b_)
Therefore since - c n 'v% it suffices to show that

- 1 - o 0,k /2

) b+ ED o (k)

. N y
(2.6) 1lim s PiW, "~ < (TT‘p;'(‘o”,T)') G %n) + 0 (ky), 1<k< n)

N3ew -

2

b
_n. __)L__] .
< Y " Fnn dy = 1

exp |-

=




The statement above is verified via dominated convergence
and Lemma 2.4 below. Denoting the integrand at (2.6) by fn(y) we have
. . . K-y/2 <
for any fixed positive number K that fn(Y) <e M7, - K<y<w®
for all n sufficiently large. To obtain an integrable uniform bound

for the fn wvhen - @ < y < - K we appeal to Lemma 2.2,

First note that by (2.8) of [3] max | o 2(k) - (- )|
l1<k<n " n

= o(T%~;) so that with o chosen such that condition (2.1) holds, we have

for all n large

. 1= (0,002
PIW," < (—— ) b+ L9+ (ky), 1<k <n}
k- n c n - =
1+ p (0,k) n
n
n
< PIW,~ <b o+ ;X_ , (n®1 < k <n}
c
n
n y
2.7) < P{ max W ay <b . ay+ ———}
o <k < n-[n% k + [n) n-[n’] 4cn_[na]

Next consider the triangular array Vk,n-[nu] = Wkﬁlnu],
o< k< n—[nu]. It is easily checked that condition (2.3 i) is satisfied
for the above array and that (2.3 ii) holds for anv fixed o' with
a < a” < 1. Therefore by (2.7) and Lemma 2.2 we have that for all n
sufficiently large
eK-Y/Z , - K<y <o
(2.8) £,00 <

s
e'ty 'y, -wm<y< - K

for some positive t and K not depending on n. Therefore assuming (2.9)

we have by dominated convergence applicable by (2.8) that the limit at
e Y -
(2.6) exists and equals ;7 et e dy = 1 completing the proof of

Lemma 2.3.




v ey —— e < e

Lemma 2.4 Let {Wkn] k=1, ..., n; n=1, ... be a triangular array of ;’

. . . . .. n, n
standard normal random variables with covariance function cn(l.J) = E hk hi

given by (2.5). Then

n 1 - pn(o,k) /2 o
lim P{W," < (—-—-——) (b + Yy + 0 (k,yv), 1<k<n)
- n ¢ n —- " =
n-eo 1+ p (0,k) n
n
(2.9)
_)’
= e—e y, - ® < y < o

Proof. A simple argument shows that for any fixed ¢ > o, we have for
all n sufficiently large and for o < a < 1 chosen so that condition (2.1)

applies that

p{wk" Sbo+ \6:5 , %] <« <n}-ce
n
2
n 1 - o (o0,k) 1/2 v
< P{w, " < (———= } (b + =) + 0 (k,y), 1 <k <n}
k — ) n ¢ n - =
1 +p (0,k) n
n v
<P <b +L2E | %<k <n)
- k —™n c -
n .
Therefore it suffices to show i
. n y a e i
(2.10) lim P{Wk <b +2—, [nJck<n} =ce ﬁ
n-ew n b

By Berman's lemma [1] we have




(b + t—)
< (CONST.) L IC (i,j)] exp{- — -
[n®]<i<j<n 1+ fz (1,3)]
2
(b + )
< (CONST.) I Ip (i,j) expl- __1_1___.‘]_1__~~___} + o(1)
l1<i<j<n 1+ o (1,0)]

o(l)

where the last summation above is o(1) by the work in [3]. Thus

(2.10) holds since it is true for independent W n

K
Froof of Theorem 2.1
- - 3
Ple ™M - M )>x|M -M >0
1/2
w n e (0,K) y-x/o_(0)
LPIES ) O ek (0
=(1+0(1)) — L — — e
nP{M_-M__>o0}
n n-l
b 2
Dy=-_ Y
-C 41ln n
e dy
Bﬂ P 1/2
n on(o) 1- pn(o k) v
= = \ P o L\ . B
(1+0(1)e f p{u (1+o o k)) (b + cn)+ e, (x,¥),1<ksn
X )2
+
Eﬂ onioi
-c y 4ln n
- e dy
) X
=
+> e as n +




3. CONVERGENCE OF POINT PROCESSES

3 A natural generalization of the result in section 2 is to con-

sider the asymptotic behavior of the sequence of jump sizes conditional on

a jump occurring at time n. A result of this type is conveniently formu-

lated as a convergence result for point processes,

For each n fixed define jump times {Tn K k=0} by
Tn’o =0
Tn,k - lnf{an,k-l: Mn+i>Mn+T bokzl
n,k-1
and jump sizes {Jn o k20} by
Jn,O = MM
J =M -M ,k?l
n,k n'an,k n+Tn,k-1

Next define point processes U where for B ¢ B(R+)

n

k
g Jn,i)

n(B) = § 1.(c
n k=0 B

Under the conditions of Thecorem 2.1 we show that conditional on a jump

occurring at time n the n, converge in distribution with respect to the

%-

vague topology to homogeneous Poisson random measure with intensity (1-Y)°
Or equivalently conditional on a jump at time n for n sufficiently large

the jumps J k20 are approximately i.i.d. exponential with mean +1-7v .,

n,k’

Define point processes Mn on R x R by

Lee)

- k
H(B) = kZO LG Canac )

Let M be doubly stochastic Poisson random measure with mean measure m given

by




L s A I T T

9

m([0,t]x(x,»)) =t eXP{-[(l-\)-%x+A]?

where A ~ (l+e *) expl{-e *}.

X
Let 6(0 x) denote the degenerate measurc at (0,x) and X~l-e Vl'},
x > 0 be independent of M.
Lemma 3.1. Under the hypothesis of Theorem 2.1 we have conditional on
(Mn-Mn_1 >0).
3 M = \4 o
(5.1) n 70T Y0,%)
Proof. To show (3.1) it suffices to show Theorem 4.7 of Kallenberg [2]
that
(i) TIm E(M_ (UM -M_ »0] < EMUy+a YT
' 'n n n-! ’ (0,X)
n-o
(i1) lim P{M_(U)=0|M_-M_ >0} = p{Mw)+sY)_ =0}
: n n n-1 (o,xy
N>
where U = ﬁIiXBi is a disjoint union of bounded rectangles. Since the
1
proof of (3.2) is routine, we will not present the proof which is long
and very detailed.
Let &4(B) = ;k=0 IB(tk,xk) be a simple integer valuad Radon ‘
measure on R+XR with points {(tk,xk), k=0}. We also call 4 a point svs- ]

tem. Define a map g on the space of point systems to D{0,~) by

gs(t) = max{xk: tkit¥

Then from the space of point systems endowed with the vague topology to

D[0,~) with the Skorohod J1 topology, g is continuous, [7]. Let

Y (t) = M (t) = C ( max X -M ) , t 20
n g n n 0<k< [nt] n+k n-1
and
Y(t) = (1-\();i max(X,Z(t)-A) , t 20 .




where X and A arc independent and independent of the process !Z(t),t -0}

X~1-e-x, x>0, A~(1+e-x)exp(-c-x) and {Z(t), t20} is an extremal exp(-e—x)

process, that is for 0<t1<t2<

Wz < - <
l{“(tl)“xl’“(tz)'x2’°'

t

= F 1(min{xl,..

<t

n

.,Z(tn)sxn}

t,-t t -t

Y o
. xn})F (mln{Xz,..., xnj)...F

with F(x) = exp(-¢™%).
Lemma 3.2, Under the hypothesis ot Theorem 2.1 we have conditional on

(MM >0)
(3.3) Y (e => Y()

where => denotes convergence in distribution with respect to the Shorohod .J
topology on D[0,).

Proof. 1t is easily checked that g(M+6 d Y(*). Therefore (3.3)

0. ()
follows from Lemma 3.1 and the continuous mapping thecorem.

Conditional on A = i the process Y(t) is a pure jump Markov pro-
cess. Its jumping measure KA(X,B), which denotes the probability that the
process after leaving state x enters set B, is calculated as in [6] and is

given by
Q, (dy)

RN 2 N )

where Q,(y) = exp{-(—L-+ ) }.

vfl_-:v'
Set Y(t) = £, TSt

. b -X
where 10 = 0 and co = (1-v) X, X~l-e 7, x>0

Let h denote the map which extracts the states from the pure jump

functions in D[0,~). Then hYn =n and hY = {Ek; k20!

1

alld




Theorem 3.1. Assumc the hypothesis of Theorem 2.1. ‘Then conditional on
(Mn-Mn 1>O) ngo=>n where n is homogencous Poisson random measure with

. . -k

intensity (1-y) °.

Proof. Since the map h defined above is continuous, it remains only to

identify the limit hY = w’k; k20} as homogeneous Poisson random measure
with intensity (1-y) °. But for O\AD X © eee <xowe have
e e i
I g € dxo, 1 € dxl,..., &k € dxk.
S r S A=
= L[P{EO ¢ de, | € dxl,..., k dAklA A
N,
1 Til-y
= Bl e TRy g, dxg ]
v ) -, ]
o s S
= __L-j Pl ié: e tio Vdx dx,
/1=y i=1 JT-v i
s
_ 1 v1-y
= T © de . dxk

(1-1) 2

Hence the result follows.

p———— e
T ia .

— Y,
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